Disc Cone Clutch Application Worksheet

Use this form to request engineering assistance. The data you furnish will enable us to understand your application and recommend* the appropriate clutch. When available please attach prints or dimensional drawings.

CONTACT INFORMATION

Name:	
Email:	
Company:	
Address:	
City:	
State:	Zip:
Phone:	

APPLICATION REQUIREMENTS

Available Operating Pressure (PSI):	
Input Power Shaft Size (in.):	

Starting Time Required (sec):	
Weight Of Rotating Members (lbs):	
Radii Of Rotating Members (ft.):	
Speed (RPM):	
Cycle Rate Per Hour:	
Rotation Reductions in Multi-Shaft Systems:	

CALCULATE REQUIRED TORQUE

Begin the calculation with this basic formula:

WK²N 308t

Where: T = Torque (in foot-pounds)

N = Speed (in RPM)

W = Weight of the Rotating Member (in pounds)

K² = Radius of Gyration (in feet)

t = Starting Time (in seconds)

The radius of gyration is the distance from the center of rotation at which the entire rotating mass could be concentrated and still be equivalent to the actual distributed mass (see axis diagrams).

For multiple shaft systems, use the following formula: $WK_{e}^{2} = WK_{s}^{2} + WK_{1}^{2} \left| \frac{N_{1}}{N_{c}} \right| + \dots$

Where:

 WK_{a}^{2} = Equivalent of WK² of multiple shaft system $WK_s^2 = WK^2$ of shaft on which clutch is mounted

 $WK_1^2 = WK^2$ of second shaft assembly

- N = RPM of shaft on which clutch is mounted
- $N_1 = RPM$ of second shaft

The formula is modified to read: $T = \frac{WK_e^2N_s}{308t}$

Solid Cylinder About its Own Axis

Hollow Cylinder About its Own Axis

CALCULATE HEAT DISSIPATION

Heat dissipation must also be considered in sizing a clutch. To find the amount of heat which an application will generate, which in turn must be dissipated, use the following formulae:

$$E = \frac{WK^2N^2}{5872}$$
 or $E = \frac{\pi TNt}{60}$

Where: E = Kinetic Energy; ft-lbs

Then use: BTU/Start = $\frac{E}{778}$

BTU/Hour = (BTU/Start) × (Cycle Rate/Hour)

To determine thermal horsepower, use:

Thermal Horsepower = $\frac{BTU/Hour}{T}$

Domau

*Recommendation is based on information supplied by the customer. Final acceptance and approval is the responsibility of the customer. Tolomatic recommends field testing or simulation of field testing on the machine it is designed for.

Fax: 763-478-8080 • Email: help@tolomatic.com